Οριγκάμι για μικρούς

Related

Κυβερνοασφάλεια: Η Γερμανία ετοιμάζει επίθεση στους εχθρούς του κυβερνοχώρου

Η γερμανική κυβέρνηση προετοιμάζει μια αναθεώρηση των εξουσιών της στον τομέα των πληροφοριών και της κυβερνοασφάλειας, προκειμένου να αντιμετωπίσει τους ξένους χάκερ και κατασκόπους με δικές της επιθετικές κυβερνοεπιχειρήσεις. Η Γερμανία έχει πληγεί από μια σειρά ψηφιακών και υβριδικών διαταραχών, από εισβολές drone σε αεροδρόμια του Βερολίνου και του Μονάχου έως κυβερνοεπιθέσεις στο σύστημα ελέγχου

Mistral: Στόχος το 1 δισ. έσοδα το 2026 εν μέσω φόβων… Τραμπ

Η γαλλική startup τεχνητής νοημοσύνης Mistral περνά από την αφάνεια σε θέση κύριου εκπροσώπου της ευρωπαϊκής ψηφιακής ανεξαρτησίας, με ετήσιο ρυθμό εσόδων που ξεπερνά τα 400 εκατομμύρια ευρώ και φιλοδοξίες για το ορόσημο του 1 δισ. εντός του έτους. Ιδρυμένη μόλις το 2023 στο Παρίσι, η εταιρεία εκμεταλλεύεται την αυξανόμενη απαίτηση επιχειρήσεων και κυβερνήσεων για

Motorola & Euroleague: Το “Bouncing for Good” ενώνει δυνάμεις με τον Ολυμπιακό και τον Παναθηναϊκό για να εμπνεύσει τη νέα γενιά!

Το πρόγραμμα One Team της Euroleague Basketball και η Motorola φέρνουν την πρωτοβουλία Bouncing for Good στο 3ο Δημοτικό Σχολείο Άνω Λιοσίων, για να δώσουν νέους ορίζοντες στα παιδιά της τοπικής κοινότητας μέσα από το μπάσκετ, την εκπαίδευση και την κοινωνική προσφορά. Το Bouncing for Good, η κοινωνική πρωτοβουλία που αναπτύχθηκε από το πρόγραμμα One

Πώς η τεχνητή νοημοσύνη αλλάζει τον τομέα της υγείας – Τα οφέλη, οι κίνδυνοι και τα όρια

Η τεχνητή νοημοσύνη έχει ήδη αρχίσει να αλλάζει την υγειονομική περίθαλψη, κυρίως σε ό,τι αφορά τις απεικονιστικές εξετάσεις, την υποστήριξη κλινικών αποφάσεων, τη διαλογή περιστατικών και τη μείωση της γραφειοκρατίας. «Κερδίζουμε ταχύτητα, συνέπεια και καλύτερη αξιοποίηση δεδομένων με την τεχνητή νοημοσύνη ως εργαλείο υποστήριξης, όχι ως αντικαταστάτη του γιατρού. Στο μέλλον αναμένεται περισσότερη εξατομίκευση της

Mistral: Η ευρωπαϊκή απάντηση στην OpenAI επενδύει δισ. για υποδομές ΑΙ στη Σουηδία

Η γαλλική startup Mistral, που δραστηριοποιείται στον τομέα της τεχνητής νοημοσύνης, ανακοίνωσε την Τετάρτη ότι θα επενδύσει 1,2 δισεκατομμύρια ευρώ σε ψηφιακή υποδομή στη Σουηδία, συμπεριλαμβανομένων κέντρων δεδομένων τεχνητής νοημοσύνης. Η Mistral, που ιδρύθηκε το 2023, έχει αναδειχθεί σε μία από τις κορυφαίες εταιρείες τεχνητής νοημοσύνης στην Ευρώπη Η ανακοίνωση έρχεται σε μια περίοδο που

Honor 600 Lite: στο Geekbench με Dimensity 7100

Η σειρά Honor 600 ετοιμάζεται για παγκόσμιο λανσάρισμα και όλα δείχνουν πως το Honor 600 Lite θα είναι από τα πρώτα μοντέλα που θα δούμε στην αγορά. Η συσκευή έχει ήδη περάσει από αρκετές πιστοποιήσεις, ενώ τώρα έκανε την εμφάνισή της και στο Geekbench, αποκαλύπτοντας βασικά τεχνικά χαρακτηριστικά. Και το πιο ενδιαφέρον στοιχείο; Ο επεξεργαστής

Motorola Edge 70 Fusion: Διέρρευσαν νέες εικόνες

Το Motorola Edge 70 Fusion ετοιμάζεται για επίσημη ανακοίνωση και οι διαρροές δεν σταματούν. Μετά τα πρώτα renders που το έδειχναν σε αποχρώσεις Pantone Country Air και Pantone Silhouette, τώρα διέρρευσαν νέες εικόνες που αποκαλύπτουν περισσότερα χρώματα και επιβεβαιώνουν τον σχεδιασμό του. Και αν κρίνουμε από όσα βλέπουμε, η Motorola συνεχίζει να δίνει μεγάλη έμφαση

Πέθανε ο Γιώργος Γεράρδος, ιδρυτής της αλυσίδας Πλαίσιο, σε ηλικία 80 ετών

Ο Γιώργος Γεράρδος, ιδρυτής της ιστορικής αλυσίδας Πλαίσιο, έφυγε πρόσφατα από τη ζωή σε ηλικία 80 ετών, έπειτα από σοβαρά προβλήματα υγείας. Υπήρξε μία από τις πλέον εμβληματικές προσωπικότητες του ελληνικού επιχειρείν, καθώς κατάφερε να δημιουργήσει από το μηδέν μια επιχειρηματική δύναμη που έως σήμερα συγκαταλέγεται στις κορυφαίες εταιρείες της χώρας, με ισχυρή παρουσία τόσο

Sony WH-1000XM6: Έρχεται νέα έκπληξη;

Η Sony φαίνεται πως δεν έχει πει ακόμη την τελευταία της λέξη. Ενώ όλοι περιμένουν την πρεμιέρα των νέων WF-1000XM6, η εταιρεία άφησε να εννοηθεί ότι ετοιμάζει και κάτι ακόμη. Και αυτή τη φορά, όλα δείχνουν προς τα WH-1000XM6. Αν δεις τα teasers των τελευταίων ημερών, καταλαβαίνεις ότι η Sony παίζει το παιχνίδι της προσμονής

OpenAI AI συσκευή: Καθυστερεί μέχρι το 2027

Η AI συσκευή της OpenAI που σχεδιάζει ο Jony Ive δεν θα κυκλοφορήσει τελικά μέσα στο 2026. Αν περίμενες να δεις την εταιρεία πίσω από το ChatGPT να μπαίνει δυναμικά στο hardware σύντομα, μάλλον θα χρειαστεί λίγη υπομονή ακόμη. Τα τελευταία έγγραφα δείχνουν ξεκάθαρα ότι η κυκλοφορία μεταφέρεται για το 2027. Επίσημη επιβεβαίωση για την

Google: Νέο εργαλείο επιτρέπει να διαγράψετε ανεπιθύμητες φωτογραφίες από το Google Search

Την δυνατότητα να διαγράψετε ανεπιθύμητες και προσωπικές φωτογραφίες από τη δημοφιλέστερη μηχανή αναζήτησης, δίνει η Google. Ανακοίνωσε ένα νέο εργαλείο που επιτρέπει την άμεση αφαίρεση προσωπικών και ακατάλληλων εικόνων (explicit images) πριν αυτές διαδοθούν στο διαδίκτυο. Διατηρήστε τον έλεγχο των προσωπικών σας πληροφοριών στο διαδίκτυο Το νέο αυτό πλαίσιο δεν αφορά μόνο περιπτώσεις εκδικητικής πορνογραφίας αλλά καλύπτει

Το ChatGPT φέρνει διαφημίσεις: Θα στηρίζονται στα μυστικά που αποκαλύπτετε στην τεχνητή νοημοσύνη;

Η OpenAI φέρνει διαφημίσεις στη δωρεάν και την απλή συνδρομιτική έκδοση του ChatGPT, ώστε να αυξήσει τα έσοδά της από τη στιγμή που οι συνδρομές δεν αποφέρουν το αναμενόμενο κέρδος. Έτσι, ακολουθώντας το παράδειγμα άλλων εταιρειών τεχνολογίας (π.χ. Meta) υπόσχεται εξατομικευμένες διαφημίσεις, που ο χρήστης θα αποφεύγει μόνο αν αγοράζει την ακριβή συνδρομή. Οι διαφημίσεις

Share

Είμαστε παρέα με μια ομάδα μικρών παιδιών που υποθέτουμε πως ακόμη δεν έχουν δεχθεί την «επίθεση» των αριθμητικών συμβόλων και θέλουμε η επαφή τους με ό,τι λέγεται αριθμητική στο Δημοτικό να είναι περίπου όπως η επαφή με μια αίθουσα γεμάτη καινούργια παιχνίδια. Στο μυαλό τους δηλαδή η «ύλη» που πρέπει να αφομοιώσουν να έχει γίνει ένα με δράσεις που να θεωρούνται διασκέδαση. Εξερευνούμε στην ουσία το πόσα παιχνίδια μπορούν να γίνουν χάρη στα Μαθηματικά χωρίς καν να νιώσει ένα παιδί ότι κάνει αυτό το μάθημα, ένα από αυτά που από τους περισσότερους θεωρούνται βασανιστικά και δύσκολα σε όλη τη διάρκεια της μαθητικής ζωής.

Ενα αλλιώτικο μάθημα

Αφού λοιπόν ζωγραφίσαμε σε μεγάλα χαρτιά διάφορα σχήματα, συζητήσαμε πώς θα τα κατατάξουμε σε ομάδες, για να μην κάνει «κοιλιά» το ενδιαφέρον έχουμε όλοι από μια απλή μακρόστενη χάρτινη ταινία, σε σχήμα ορθογώνιου παραλληλογράμμου και θα δούμε μέχρι πού μπορεί να μας κρατήσει το ενδιαφέρον.

Δίνουμε σε όλους από μια κηρομπογιά και ζητούμε να προσπαθήσουν να τραβήξουν μια συνεχόμενη γραμμή που να πηγαίνει και στις δύο πλευρές χωρίς να διακόπτεται, χωρίς δηλαδή να χρειαστεί να σηκώσουμε τη μύτη από το χαρτί. Ολοι διαπιστώνουν πως αυτό είναι αδύνατον. Υπάρχει άραγε τρόπος; Μετά από αρκετό προβληματισμό και διάφορες προτάσεις κάνουμε ό,τι σκέφθηκαν και μελέτησαν για χρόνια δύο άνθρωποι από τη χώρα της Τοπολογίας, που η δουλειά τους ήταν να ασχολούνται με τέτοια προβλήματα. Και οι δυο Γερμανοί. Λιγότερο γνωστός είναι ο Γιόχαν Λίστινγκ (1808-1882) και πλέον διάσημος ο Αύγουστος Μέμπιους (1790-1868).

Κάνουμε κάτι πολύ απλό. Στρέφουμε το ένα άκρο της ταινίας κατά 180 μοίρες και το συνδέουμε στο άλλο άκρο της. Αν τώρα πάρουμε πάλι μια κηρομπογιά άλλου χρώματος βλέπουμε πως χωρίς να σηκωθεί η μύτη επιστρέφει στο σημείο εκκίνησης αφού έχει περάσει και από τις δύο επιφάνειες. Κόβοντας με το ψαλίδι την ένωση των δύο άκρων οι δύο επιφάνειες βρίσκονται πλέον χρωματισμένες. Τα παιδιά μπαίνουν στον συναρπαστικό κόσμο των Μαθηματικών από μια ασυνήθιστη πόρτα.

Ιαπωνική σοφία

Και πριν προλάβουν να συνέλθουν, για την ίδια ταινία τους λέμε πως θέλουμε να τη χωρίσουμε σε ίσα τμήματα. Θυμίζω ότι ακόμη δεν έχουμε καν εμφανίσει το σύμβολο ενός οποιουδήποτε αριθμού. Λέμε λοιπόν πως θέλουμε να τη χωρίσουμε σε τόσα ίσα μεταξύ τους κομμάτια όσα αντιστοιχούν στα δάχτυλα του ενός χεριού. Δηλαδή στο τέλος θα βάλουμε τα δάχτυλά μας στο καθένα από τα τμήματα που θα προκύψουν (τότε θα  είναι η πρώτη απόπειρα αντιστοίχισης).

Κάνουμε μια εκτίμηση, και με την βοήθεια των δακτύλων, πόσο περίπου θα πρέπει να είναι το κάθε χώρισμα. Οσο μεγαλύτερο λάθος γίνει στην εκτίμηση αυτήν τόσο καλύτερα διότι έτσι θα γίνει περισσότερο αισθητή η αξία της μεθόδου που θα ακολουθήσουμε. Σημειώνουμε λοιπόν το πρώτο από αριστερά διάστημα με τη μύτη ενός μολυβιού. Το υπόλοιπο τμήμα της ταινίας στα δεξιά το διπλώνουμε (ελαφρά) στη μέση. Το δεξί τμήμα μέχρι το τέλος το διπλώνουμε ξανά στη μέση. Η ταινία έχει ήδη χωριστεί αχνά σε τέσσερα τμήματα. Ενα μικρότερο αριστερά, αμέσως μετά ένα σχεδόν διπλάσιο και δεξιά άλλα δύο μικρότερα, ίσα περίπου με το πρώτο. Φέρνουμε το δεξιό άκρο μέχρι το σημάδι από το μολύβι και διπλώνουμε. Εχουμε τώρα την ταινία διαιρεμένη σε πέντε τμήματα. Διπλώνουμε το αριστερό άκρο μέχρι να φθάσει ακριβώς στην αρχή του δευτέρου τμήματος. Πιέζουμε δυνατά στην τσάκιση. Παρατηρούμε την απόσταση (που μάλλον θα υπάρχει) από το σημάδι του μολυβιού. Επαναλαμβάνοντας τη διαδικασία κάθε φορά επιτυγχάνουμε και πιο ομοιόμορφη διαίρεση σε ίσα τμήματα. Με τη βοήθεια ενός χάρακα δείχνουμε στα παιδιά το πόσο καλά τα κατάφεραν με τα χέρια τους.

Πρόκειται για μια ενδιαφέρουσα διαδικασία με απτά αποτελέσματα. Και όποιος ενήλικος ενδιαφέρεται μπορεί να καταπιαστεί να αποδείξει την ορθότητα της μεθόδου μαθηματικά. Θα περάσει μέσα από ενδιαφέροντες δρόμους όπως θα δείξουμε στη συνέχεια. Η μέθοδος είναι γνωστή ως Fujimoto’s Approximation.

  1. Ενα παιδί έχει στο σακίδιό του Ν αριθμό καραμέλες. Πηγαίνει επίσκεψη διαδοχικά στα σπίτια 20 φίλων του. Σε κάθε σπίτι αφήνει τις μισές καραμέλες και εκείνοι για ευχαριστώ του δίνουν μία. Μετά την εικοστή επίσκεψη του είχαν μείνει 2 καραμέλες. Με πόσες καραμέλες στο σακίδιο ξεκίνησε;
  2. Φτιάχνουμε δεκαψήφιους αριθμούς, με τα ψηφία από το 0 έως το 9 να εμφανίζονται μόνο μία φορά σε κάθε αριθμό. Συνολικά προκύπτουν 3.628.800 τέτοιοι διαφορετικοί αριθμοί. Πόσοι από αυτούς είναι πρώτοι;

Οι απαντήσεις των προηγούμενων κουίζ

  1. Μια πάπια βρίσκεται στο κέντρο κυκλικής λίμνης ενώ έξω από τη λίμνη καραδοκεί αλεπού που όμως δεν μπαίνει στο νερό. Αλλά και η πάπια δεν μπορεί να πετάξει μακριά αν δεν πατήσει πρώτα στο χώμα. Η αλεπού τρέχει γύρω-γύρω με ταχύτητα τέσσερις φορές μεγαλύτερη από την ταχύτητα της πάπιας μέσα στο νερό. Ζητούσαμε τον τρόπο που με αυτόν θα μπορούσε να αποδράσει η πάπια. Η δυσμενέστερη περίπτωση για την αλεπού είναι να έχει να διανύσει μισή περιφέρεια κύκλου, δηλαδή πxr και την ίδια στιγμή η πάπια να κολυμπά απόσταση r. Ομως έχοντας ομαλή ταχύτητα και οι δύο, η πάπια θα είναι σαν να έχει να κάνει 4 φορές την απόσταση r αφού η αλεπού τρέχει 4 φορές περισσότερο. Και επειδή πxr < 4xr θα την προλάβει. Αν όμως η πάπια κολυμπά κυκλικά σε μια ακτίνα ελάχιστα μικρότερη από (r/4) θα έχει ένα μικρό προβάδισμα καθώς θα έχουν και οι δύο κυκλική πορεία και όταν φθάσει να έχει η αλεπού μισή περιφέρεια να διανύσει, η πάπια τότε απέχοντας σχεδόν (3r/4) από την ακτή μπορεί να κολυμπήσει κατευθείαν προς τα έξω διότι (πxr)>4x(3r/4)=3xr.
  2. Σε έναν μικρό φεουδαρχικό καταυλισμό με 66 μέλη υπήρχε ένας πρίγκιπας και 65 υπήκοοι. Μέχρι κάποια στιγμή είχαν όλοι για μισθό, μαζί και ο πρίγκιπας, από 1 χρυσό νόμισμα. Ο πονηρός πρίγκιπας όμως τώρα ξύπνησε και προτείνει κάθε τόσο και νέο μισθολόγιο. Το καθένα από αυτά το υπερψηφίζουν όσοι παίρνουν αύξηση και το καταψηφίζουν όσοι έχουν μείωση ενώ αδιαφορούν όσοι δεν έχουν μεταβολή. Γίνεται δεκτή κάθε φορά η αλλαγή αν υπάρχει πλειοψηφία υπέρ της. Ο πρίγκιπας δεν ψηφίζει. Ποιο ποσό από τα 66 νομίσματα μπορεί να φθάσει να παίρνει; Η πρώτη πρόταση του πρίγκιπα ήταν 33 υπήκοοι να πάρουν αύξηση 1 νόμισμα και οι υπόλοιποι 33 (μαζί και αυτός) να παίρνουν πλέον 0. Αυτό προφανώς έγινε δεκτό από την πλειοψηφία (33 έναντι 32). Αμέσως μετά αυξάνει τον μισθό των 17 από τους 33 στα 3 νομίσματα και κάνει μηδέν των άλλων 16. Συνεχίζει έτσι, οπότε ο αριθμός αυτών που παίρνουν αύξηση πέφτει στους 9, 5, 3, 2. Ακριβώς τότε βρίσκει 3 που έπαιρναν 0 και τους υπόσχεται από 1 νόμισμα ενώ εκείνος προτείνεται να παίρνει 63. Ψηφίζουν και κερδίζει. Δεχόμαστε προφανώς (και αυτό ομολογουμένως είναι μια αδυναμία του προβλήματος) ότι αυτοί που παίρνουν 0 μισθό χάνουν και το δικαίωμα να ψηφίζουν στη συνέχεια.

Έντυπη έκδοση Το Βήμα

Motorola & Euroleague: Το “Bouncing for Good” ενώνει δυνάμεις με τον Ολυμπιακό και τον Παναθηναϊκό για να εμπνεύσει τη νέα γενιά!

Το πρόγραμμα One Team της Euroleague Basketball και η Motorola φέρνουν την πρωτοβουλία Bouncing for Good στο 3ο Δημοτικό Σχολείο Άνω Λιοσίων, για να δώσουν νέους ορίζοντες στα παιδιά της τοπικής κοινότητας μέσα από το μπάσκετ, την εκπαίδευση και την κοινωνική προσφορά. Το Bouncing for Good, η κοινωνική πρωτοβουλία που αναπτύχθηκε από το πρόγραμμα One

Honor 600 Lite: στο Geekbench με Dimensity 7100

Η σειρά Honor 600 ετοιμάζεται για παγκόσμιο λανσάρισμα και όλα δείχνουν πως το Honor 600 Lite θα είναι από τα πρώτα μοντέλα που θα δούμε στην αγορά. Η συσκευή έχει ήδη περάσει από αρκετές πιστοποιήσεις, ενώ τώρα έκανε την εμφάνισή της και στο Geekbench, αποκαλύπτοντας βασικά τεχνικά χαρακτηριστικά. Και το πιο ενδιαφέρον στοιχείο; Ο επεξεργαστής